与传统的机器人手不同,由于固有的不确定性,兼容的手不足的手对模型的挑战。因此,通常基于视觉感知执行抓握对象的姿势估计。但是,在闭塞或部分占地环境中,对手和物体的视觉感知可以受到限制。在本文中,我们旨在探索触觉的使用,即动力学和触觉感测,以构成姿势估计和手动操纵,手工不足。这种触觉方法会减轻并非总是可用的视线。我们强调识别系统的特征状态表示,该状态表示不包括视觉,可以通过简单和低成本的硬件获得。因此,对于触觉传感,我们提出了一个低成本和灵活的传感器,该传感器主要是与指尖一起打印的3D,并可以提供隐式的接触信息。我们将双手手动的手作为测试案例不足,我们分析了动力学和触觉特征以及各种回归模型对预测准确性的贡献。此外,我们提出了一种模型预测控制(MPC)方法,该方法利用姿势估计将对象操纵为仅基于触觉的所需状态。我们进行了一系列实验,以验证具有不同几何形状,刚度和纹理的各种物体的姿势的能力,并以相对较高的精度显示工作空间中的目标。
translated by 谷歌翻译
A normalizing flow (NF) is a mapping that transforms a chosen probability distribution to a normal distribution. Such flows are a common technique used for data generation and density estimation in machine learning and data science. The density estimate obtained with a NF requires a change of variables formula that involves the computation of the Jacobian determinant of the NF transformation. In order to tractably compute this determinant, continuous normalizing flows (CNF) estimate the mapping and its Jacobian determinant using a neural ODE. Optimal transport (OT) theory has been successfully used to assist in finding CNFs by formulating them as OT problems with a soft penalty for enforcing the standard normal distribution as a target measure. A drawback of OT-based CNFs is the addition of a hyperparameter, $\alpha$, that controls the strength of the soft penalty and requires significant tuning. We present JKO-Flow, an algorithm to solve OT-based CNF without the need of tuning $\alpha$. This is achieved by integrating the OT CNF framework into a Wasserstein gradient flow framework, also known as the JKO scheme. Instead of tuning $\alpha$, we repeatedly solve the optimization problem for a fixed $\alpha$ effectively performing a JKO update with a time-step $\alpha$. Hence we obtain a "divide and conquer" algorithm by repeatedly solving simpler problems instead of solving a potentially harder problem with large $\alpha$.
translated by 谷歌翻译
变形金刚在序列建模及以后取得了显着的成功,但相对于输入序列的长度,二次计算和记忆复杂性遭受了损失。利用技术包括稀疏和线性的注意力和哈希技巧;已经提出了有效的变压器来降低变压器的二次复杂性,但会显着降低准确性。作为响应,我们首先将计算注意图的线性注意力和残差连接解释为梯度下降步骤。然后,我们将动量引入这些组件,并提出\ emph {动量变压器},该动量利用动量来提高线性变压器的精度,同时保持线性内存和计算复杂性。此外,我们制定了一种自适应策略,以根据二次优化的最佳动量计算模型的动量值。这种自适应动量消除了寻找最佳动量值的需求,并进一步增强了动量变压器的性能。包括图像生成和机器翻译在内的自回归和非自动回归任务的一系列实验表明,动量变压器在训练效率和准确性方面优于流行的线性变压器。
translated by 谷歌翻译
我们引入了一种称为吉祥物(具有最佳传输的多代理形状控制)的方法,以计算具有形状/形成/密度约束的剂的最佳控制溶液。例如,我们可能希望在代理商上应用形状约束 - 也许我们希望代理人沿着路径保持特定的形状,或者我们希望代理商分散以最大程度地减少碰撞。我们可能还希望一定比例的代理移动到一个目的地,而其他代理人则移至另一个目的地,并以最佳方式进行此操作,即源点性作业应该是最佳的。为了实现这一目标,我们利用地球移动器从最佳运输的距离将代理分配到适当的位置,以便可以满足某些形状。该成本都以终端成本以及最佳控制问题的运行成本引入。
translated by 谷歌翻译
多头注意力是最先进的变压器背后的推动力,它在各种自然语言处理(NLP)和计算机视觉任务中实现了出色的性能。已经观察到,对于许多应用,这些注意力头会学习冗余嵌入,并且大多数可以在不降低模型性能的情况下去除。受到这一观察的启发,我们提出了变压器的混合物(变压器-MGK)的混合物,这是一种新型的变压器架构,用每个头部的钥匙混合了变压器中的冗余头部。这些键的混合物遵循高斯混合模型,并使每个注意力头有效地集中在输入序列的不同部分上。与传统的变压器对应物相比,变压器-MGK会加速训练和推理,具有较少的参数,并且需要更少的拖船来计算,同时实现跨任务的可比性或更高的准确性。 Transformer-MGK也可以轻松扩展到线性注意力。我们从经验上证明了在一系列实用应用中变形金属MGK的优势,包括语言建模和涉及非常长序列的任务。在Wikitext-103和远程竞技场基准中,具有4个头部的变压器MGK具有与基线变压器具有8个头的可比性或更好的性能。
translated by 谷歌翻译
深度学习的一个有前景的趋势取代了具有隐式网络的传统馈送网络。与传统网络不同,隐式网络解决了一个固定点方程来计算推断。解决固定点的复杂性变化,具体取决于提供的数据和误差容差。重要的是,可以通过与前馈网络的STARK对比度训练隐式网络,其内存需求与深度线性缩放。但是,没有免费的午餐 - 通过隐式网络锻造BackPropagation通常需要解决从隐式功能定理引起的昂贵的Jacobian等方程。我们提出了无雅各比的BackPropagation(JFB),一种固定内存方法,这些方法旨在解决基于雅略族裔的基于雅代族人的方程。 JFB使隐式网络更快地培训,并明显更容易实现,而不会牺牲测试精度。我们的实验表明,使用JFB培训的隐式网络与给出相同数量的参数的前馈网络和现有的隐式网络具有竞争力。
translated by 谷歌翻译